Technische Universität München	Exam Questions
Analytical Research Group	Material Science
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

Questions from the "PAL Prüfungsbuch" Material Knowledge

070: In which of the reaction equations the blue reaction partner acts as a "Brönsted acid"?

- 1) $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$
- 2) $Mg_2^+ + 2 OH^- \rightarrow Mg(OH)_2$
- 3) $Mg_2^+ + 2 OH^- \rightarrow Mg(OH)_2$
- 4) $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$
- 5) $H_3O^+ + HCO_3^- \rightarrow CO_2 + 2 H_2O$

071: In which of the reaction equations does HSO₄ function as a "Brönsted base"?

- 1) $HSO_4^- + H_3O^+ \rightarrow H_2SO_4 + H_2O$
- 2) $HSO_4^- + OH^- \rightarrow SO_4^{2-} + H_2O$
- 3) $HSO_4^- + NH_3 \rightarrow SO_4^{2-} + NH_4^+$
- 4) $HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$
- 5) $HSO_4^- + Cl^- \rightarrow SO_4^{2-} + HCl$

072: Which of the reaction equations does *not* describe an acid-base-reaction?

- 1) NaOH + HBr \rightarrow NaBr + H₂O
- 2) $Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2 H_2O$
- 3) $H_2O_2 + 2 HI \rightarrow I_2 + 2 H_2O$
- 4) $H_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2 H_2O$
- 5) $2 HI + Mg(OH)_2 \rightarrow MgI_2 + 2 H_2O$

075: Which statement regarding amino acids is correct?

- 1) In all amino acids the NH₂-group is bond to the second C-atom
- 2) Amino acids have low melting points
- 3) All α -amino acids are optically active
- 4) All α -amino acids are parts of proteins of living creatures
- 5) Short-chain amino acids are not easily soluble in water

076: What is the reason for the inertness of alkanes?

- 1) The symmetric structure
- 2) The unsaturated character
- 3) The highly delocalized electron pairs
- 4) The high binding energies
- 5) The pronounced electronegativity of the atoms

Technische Universität München	Exam Questions
Analytical Research Group	Material Science
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

077: Which assignment of class of compounds and functional group is correct?

Class of compounds	Functional group
Alkanol (alcohol)	R—C R
Alkanal (aldehyde)	R-C H
Alkanone (ketone)	R—COH
Ether	0 R—C 0—R
Carboxylic acid	R OH R—C R

078: Which answer contains an error?

	<u>Acid</u>	Acid anhydride	Acid residue ion
1)	H_2SO_4	SO ₃	SO ₄ ²⁻
2)	H_2SO_3	SO ₂	SO_3^{2-}
3)	HNO ₃	NO_2	NO ₃
4)	H_2CO_3	CO ₂	CO ₃ ²⁻
5)	H_3PO_4	P_2O_5	PO ₄ ³⁻

080: Of which compound does not exist an isomer?

- 1) CH₃-CO-CH₃
- 2) CHCI=CHCI
- 3) CH₃-O-CH₃
- 4) CHBr=CBr₂
- 5) CH₃-CH₂-OH

081: Which reaction equation is stoichiometrically correct?

- 1) 2 Fe + 3 $O_2 \rightarrow Fe_2O_3$
- 2) $CuO + 2 H_2 \rightarrow H_2O + Cu$
- 3) AI + HCI → AICI₃
- 4) $CO_2 + NaOH \rightarrow Na_2CO_3$
- 5) $2 \text{ Mg} + O_2 \rightarrow 2 \text{ MgO}$

Technische Universität München	Exam Questions
Analytical Research Group	Material Science
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

082: In which answer the reaction product is wrong?

- 1) Benzene + ethene → ethenebenzene
- 2) Benzene + halogen → halogenbenzene
- 3) Benzene + nitric acid → nitrobenzene
- 4) Benzene + propene → isopropylbenzene
- 5) Benzene + sulfuric acid → benzenesulfonic acid

