Questions from the "PAL Prüfungsbuch" Stoichiometry

157: At ϑ = 25°C a solutions pH is 10.65. Which										
concentration of substance c(OH-) in mol/L has this										
solution?										
1) $c(OH^{-}) = 3.35 \text{ mol/L}$										
2) $c(OH^{-}) = 10.65 \text{ mol/L}$										
3) $c(OH^{-}) = 2.24 * 10^{-11} \text{ mol/L}$										
4) $c(OH^{-}) = 4.47 * 10^{-4} mol/L$										
5) $c(OH^{-}) = 1.00 * 10^{-10} \text{ mol/L}$				 						

162: 500 g sodium hydroxide solution, w(NaOH) =													
30,0 % are to be produced by mixing a sodium													
hydroxide solution, w(NaOH) = 42.0 % and water.													
Determine the weight in grams of the required													
sodium hydroxide solution, w(NaOH) = 42.0 %.													_
1) 207 g													
2) 210 g													_
3) 259 g													
4) 293 g						-							
5) 357 g		_					+	_	-	-	$\left - \right $		
			 _	 	_		 +	_	_	\vdash	\vdash		
												.	

163: 48 kg sulfuric acid, $w(H_2SO_4) = 12$ % are to be										
produced from water and sulfuric acid, w(H ₂ SO ₄) =										
96 %. Determine the weight in kilograms of the										
required sulfuric acid, w(H ₂ SO ₄) = 96 %										
										1
1) 3.8 kg										
2) 4.6 kg										
3) 5.5 kg										
4) 5.8 kg										
5) 6.0 kg										

www.eu-chemlab.eu

Technische Universität München
Analytical Research Group
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann

168: 1.5 kilograms of an organic matter are to be											
entirely burnt up. The analysis of the compound											
show the following mass percentages: w(C) = 83.7											
%, w(H) = 16.3 %. How many cubic metres of air,											
ϕ (O ₂) = 20.8 % (normal state) are necessary, when											
working with a level of excess air of 40.0 %?											
M(C) = 12.0 g/mol; M(H) = 1.0 g/mol;											
V _{mn} (O ₂) = 22.4 L/mol											
1) 15 m³											
2) 18 m ³											
3) 25 m ³											
4) 34 m ³				1						-	
5) 53 m³											
	\vdash										

Technische Universität München	Exam Questions
Analytical Research Group	Stoichiometry
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

170: 7.2 mol Iron are to be transposed to												
ferrous(III)-sulphate, $Fe_2(SO_4)_3$. How many litres of												
sulphuric acid c(H ₂ SO ₄) = 3.0 mol/L are necessary												1
when working with a sulphuric acid excess of 25 %?												
<i>M</i> (Fe) = 55.85 g/mol												
$M(Fe_2(SO_4)_3) = 399.87 \text{ g/mol}$							1		1			
$M(H_2SO_4) = 98.07 \text{ g/mol}$									l			
									t			
1) 3.0 L												
2) 3.6 L									1			
3) 4.5 L						_			-			
4) 4.8 L						-			-			
5) 9.0 L				_			-		-			
			 			+	+		+			
								_				
												I

171: m = 250 kg fatty alcohol ($C_{16}H_{33}OH$) is to be										
produced by hydrogenation of C ₁₆ H ₂₉ OH. How many										
cubic metres H ₂ (standard conditions) are necessary										
when working with a yield of 80% and a hydrogen										
excess of 20 %?										
<i>V</i> _{mn} (H ₂) = 22.4 L/mol; <i>M</i> (C) = 12.0 g/mol										
<i>M</i> (H) = 1.00 g/mol; <i>M</i> (O) = 16.0 g/mol										
1) 4.4 m ³										
2) 69.4 m ³										
3) 70.6 m ³					 					
4) 72.3 m^3										
$F_{1} = 72.6 \text{ m}^{3}$										
5) 73.011										
excess of 20 %? $V_{mn}(H_2) = 22.4 \text{ L/mol}; M(C) = 12.0 \text{ g/mol}$ M(H) = 1.00 g/mol; M(O) = 16.0 g/mol 1) 4.4 m ³ 2) 69.4 m ³ 3) 70.6 m ³ 4) 72.3 m ³ 5) 73.6 m ³										

Technische Universität München	Exam Questions
Analytical Research Group	Stoichiometry
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

173: $100g Na_2SO_4$ · $10 H_2O$ are to be dissolved in										
water. How many grams of water are necessary to										
obtain a solution with a mass percentage w(Na ₂ SO ₄)										
= 5.00 %?										
M(S) = 32.0 g/mol										
M(H) = 1.00 g/mol										_
M(Na) = 23.0 g/mol										
M(O) = 16.0 g/mol										
1) 78.2 g										_
2) 177 g										
3) 782 g										
4) 838 g										
5) 1900 g										_

181: The following concentrations of substance of												
raw material and product of the reaction												
2 A + B 🚤 2 C												
	-	-	 	 	 	_	_	 	 			
are existent in an equilibrium.												
<i>c</i> (A) = 0.100 mol/L; <i>c</i> (B) = 0.200 mol/L												
<i>c</i> (C) = 0.800 mol/L												
What is the equilibrium constant <i>K</i> (in L/mol) of this												
reaction?												
1) K = 4.00 L/mol												
2) K = 32.0 L/mol												
3) K = 40.0 L/mol												
4) K = 320 L/mol												
5) K = 400 L/mol												

Technische Universität München Analytical Research Group PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann						Exa St	m (toic	Que hic	esti om	ion etr	s Y	
192. The used row motorial quantities for an			T						Т	T		
103. The used faw indicated qualities for all esterification reaction are $n_{\rm c} = 2.00$ mol benzoic acid		 							+	+		
and $n_{\rm r} = 10.0$ mol ethanol $n_{\rm er} = 1.40$ mol ester are									-			
existent in the state of equilibrium of this reaction.							_		-	-		_
What is the equilibrium constant <i>K</i> of this esterification			 						-	+		
reaction?												
H_5C_6 -COOH + H_5C_2 -OH \rightarrow H_5C_6 -COOC ₂ H_5 + H_2O												
1) K = 0.102												
1) $K = 0.102$ 2) $K = 0.271$												
3) $K = 0.380$												
4) $K = 2.63$												
5) $K = 10.2$												
57 K 1012												
	Щ									L		

