Questions from the "PAL Prüfungsbuch"
Stoichiometry

157: At $\vartheta=25^{\circ} \mathrm{C}$ a solutions pH is 10.65 . Which concentration of substance $c\left(\mathrm{OH}^{-}\right)$in $\mathrm{mol} / \mathrm{L}$ has this solution?

1) $c\left(\mathrm{OH}^{-}\right)=3.35 \mathrm{~mol} / \mathrm{L}$
2) $c\left(\mathrm{OH}^{-}\right)=10.65 \mathrm{~mol} / \mathrm{L}$
3) $c\left(\mathrm{OH}^{-}\right)=2.24 * 10^{-11} \mathrm{~mol} / \mathrm{L}$
4) $c\left(\mathrm{OH}^{-}\right)=4.47^{*} 10^{-4} \mathrm{~mol} / \mathrm{L}$
5) $c\left(\mathrm{OH}^{-}\right)=1.00 * 10^{-10} \mathrm{~mol} / \mathrm{L}$

162: 500 g sodium hydroxide solution, $w(\mathrm{NaOH})=$ 30,0 \% are to be produced by mixing a sodium hydroxide solution, $w(\mathrm{NaOH})=42.0 \%$ and water. Determine the weight in grams of the required sodium hydroxide solution, $w(\mathrm{NaOH})=42.0 \%$.

1) 207 g
2) 210 g
3) 259 g
4) 293 g
5) 357 g

163: 48 kg sulfuric acid, $w\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=12 \%$ are to be produced from water and sulfuric acid, $w\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=$ 96%. Determine the weight in kilograms of the required sulfuric acid, $w\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=96 \%$

1) 3.8 kg
2) 4.6 kg
3) 5.5 kg
4) 5.8 kg
5) 6.0 kg

168: 1.5 kilograms of an organic matter are to be entirely burnt up. The analysis of the compound show the following mass percentages: $w(\mathrm{C})=83.7$ $\%, w(H)=16.3 \%$. How many cubic metres of air, $\varphi\left(\mathrm{O}_{2}\right)=20.8 \%$ (normal state) are necessary, when working with a level of excess air of 40.0% ?
$\mathrm{M}(\mathrm{C})=12.0 \mathrm{~g} / \mathrm{mol} ; \mathrm{M}(\mathrm{H})=1.0 \mathrm{~g} / \mathrm{mol}$;
$\mathrm{V}_{\mathrm{mn}}\left(\mathrm{O}_{2}\right)=22.4 \mathrm{~L} / \mathrm{mol}$

1) $15 \mathrm{~m}^{3}$
2) $18 \mathrm{~m}^{3}$
3) $25 \mathrm{~m}^{3}$
4) $34 \mathrm{~m}^{3}$
5) $53 \mathrm{~m}^{3}$

169: Cyclohexanal, $\mathrm{m}=500 \mathrm{~kg}$ is to be produced by hydrogenation of phenol. How many cubic metres of hydrogen (normal state) are necessary, when working with a hydrogenation yield of 90.0% and a hydrogen excess of 15.0 \%?

$M(\mathrm{C})=12.0 \mathrm{~g} / \mathrm{mol} ; M(\mathrm{H})=1.0 \mathrm{~g} / \mathrm{mol}$
$M(\mathrm{O})=16.0 \mathrm{~g} / \mathrm{mol} ; V_{\mathrm{mn}}\left(\mathrm{H}_{2}\right)=22.4 \mathrm{~L} / \mathrm{mol}$

1) $370 \mathrm{~m}^{3}$
2) $386 \mathrm{~m}^{3}$
3) $397 \mathrm{~m}^{3}$
4) $425 \mathrm{~m}^{3}$
5) $429 \mathrm{~m}^{3}$

170: 7.2 mol Iron are to be transposed to ferrous(III)-sulphate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. How many litres of sulphuric acid $c\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=3.0 \mathrm{~mol} / \mathrm{L}$ are necessary when working with a sulphuric acid excess of 25% ? $M(\mathrm{Fe})=55.85 \mathrm{~g} / \mathrm{mol}$
$M\left(\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)=399.87 \mathrm{~g} / \mathrm{mol}$
$M\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=98.07 \mathrm{~g} / \mathrm{mol}$

1) 3.0 L
2) 3.6 L
3) 4.5 L
4) 4.8 L
5) 9.0 L

171: $m=250 \mathrm{~kg}$ fatty alcohol $\left(\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OH}\right)$ is to be produced by hydrogenation of $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{OH}$. How many cubic metres H_{2} (standard conditions) are necessary when working with a yield of 80% and a hydrogen excess of 20% ?
$V_{\mathrm{mn}}\left(\mathrm{H}_{2}\right)=22.4 \mathrm{~L} / \mathrm{mol} ; M(\mathrm{C})=12.0 \mathrm{~g} / \mathrm{mol}$
$M(\mathrm{H})=1.00 \mathrm{~g} / \mathrm{mol} ; M(\mathrm{O})=16.0 \mathrm{~g} / \mathrm{mol}$

1) $4.4 \mathrm{~m}^{3}$
2) $69.4 \mathrm{~m}^{3}$
3) $70.6 \mathrm{~m}^{3}$
4) $72.3 \mathrm{~m}^{3}$
5) $73.6 \mathrm{~m}^{3}$

173: $100 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ are to be dissolved in water. How many grams of water are necessary to obtain a solution with a mass percentage $w\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ = 5.00 \%?
$\mathrm{M}(\mathrm{S})=32.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}(\mathrm{Na})=23.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} / \mathrm{mol}$

1) 78.2 g
2) 177 g
3) 782 g
4) 838 g
5) 1900 g

181: The following concentrations of substance of raw material and product of the reaction
2 A + B
2 C
are existent in an equilibrium.
$c(A)=0.100 \mathrm{~mol} / \mathrm{L} ; c(B)=0.200 \mathrm{~mol} / \mathrm{L}$
$c(C)=0.800 \mathrm{~mol} / \mathrm{L}$

What is the equilibrium constant K (in $\mathrm{L} / \mathrm{mol}$) of this reaction?

1) $\mathrm{K}=4.00 \mathrm{~L} / \mathrm{mol}$
2) $\mathrm{K}=32.0 \mathrm{~L} / \mathrm{mol}$
3) $\mathrm{K}=40.0 \mathrm{~L} / \mathrm{mol}$
4) $\mathrm{K}=320 \mathrm{~L} / \mathrm{mol}$
5) $\mathrm{K}=400 \mathrm{~L} / \mathrm{mol}$

Technische Universität München	Exam Questions
Analytical Research Group	Stoichiometry
PD Dr. Thomas Letzel; PD Dr. Johanna Graßmann	

183: The used raw material quantities for an esterification reaction are $n_{\mathrm{B}}=2.00 \mathrm{~mol}$ benzoic acid and $n_{\mathrm{E}}=10.0 \mathrm{~mol}$ ethanol. $n_{\mathrm{Es}}=1.40 \mathrm{~mol}$ ester are existent in the state of equilibrium of this reaction. What is the equilibrium constant K of this esterification reaction?
$\mathrm{H}_{5} \mathrm{C}_{6}-\mathrm{COOH}+\mathrm{H}_{5} \mathrm{C}_{2}-\mathrm{OH}$ \qquad $\mathrm{H}_{5} \mathrm{C}_{6}-\mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

1) $K=0.102$
2) $K=0.271$
3) $K=0.380$
4) $K=2.63$
5) $K=10.2$

