Questions from the "PAL Prüfungsbuch" Stoichiometry – Part 2

451: In the course of the titration of $m_E = 0.2500$ g iron											
ore with potassium permanganate solution											
\tilde{c} ($\frac{1}{5}$ KMnO ₄) = 100 mmol/L accidentally to much standard										T	
solution was applied. Therefore $m_{\rm M}$ = 500.0 g Mohr salt,											
$Fe(NH_4)_2(SO_4)_2$ · 6 H_2O , was added to the solution. The											
tritration was continued. A total of $V = 33.30 \text{ mL}$											
potassium permanganate solution was consumed. How											
much iron was contained in the ore?											
$M(E_0) = EE 80 g/mol$										T	
$M(Fe(NH_{1})_{c}(SO_{1})_{c} + 6H_{c}O) = 392.0 \text{ g/mol}$											
$MnO_4^{-} + 5 Fe^{2+} + 8 H^+ \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O_1^{-}$											
1) 22.9 %										T	
2) 24.8 %											
2) 20.2 %											
3) 38.3 %											
4) 45.8 %											
5) 74.3 %											
-,											

456: For the determination of the acid value $m = 1.251$ g											
of an oil are dissolved in neutralized alcohol and then									1		
titrated with V = 22.3 mL KOH, č (KOH) 0.1 mol/L,									1		
t = 1.0000, against phenolphthalein. What is the acid											
value AV (in mg/g)?											
M(KOH) = 56.1 g/mol											
1) $AV = 50.0 \text{ mg/g}$											
2) $\Lambda V = 124 \text{ mg/g}$											
2) AV - 124 mg/g											
<i>3)</i> AV = 125 mg/g											
4) AV = 100 mg/g											
5) $AV = 155 \text{ mg/g}$											

Technische Universität München	Exam Questions – Part 2
Analytical Research Group	Stoichiometry
PD Dr. Thomas Letzel: PD Dr. Johanna Graßmann	

459: What is the equivalent concentration c_{eq} (in mol/L)														
of an ammonia solution that contains 400 L gaseous NH_3	-													
per litre under normal conditions?														
$V_{mn} = 22.4 \text{ L/mol}$														
$M(NH_3) = 17.031 \text{ g/mol}$														
1) $c_{\rm eq} = 0.895 \text{ mol/L}$														
2) $c_{\rm eq} = 1.19 \text{ mol/L}$							 							
3) $c_{eq} = 1.79 \text{ mol/L}$														
4) $c_{eq} = 11.9 \text{ mol/L}$				 					 					
5) $c_{\rm eq} = 17.9 \text{ mol/L}$				 			 		 					
	1		1		 									
462: For titer determination of a potassium														
permanganate solution $\tilde{c}(\frac{1}{5} \text{KMnO}_4) = 0.1 \text{ mol/L},$														
m = 0.2180 g sodium oxalate Na ₂ C ₂ O ₄ are weighed in.														
After disolving in water and addition of sulphuric acid									 					
the titration with permanganate solution is carried out.					 _	_		_		_	 \vdash			
potassium permangante solution?									 		 \vdash			
												⊢		
$2 \text{ MnO}_4^- + 5 \text{ C}_2 \text{O}_4^{-2-} + 16 \text{ H}^+ \rightarrow 2 \text{ Mn}^{2+} + 10 \text{ CO}_2 + 8 \text{ H}_2 \text{O}$														
<i>M</i> (Na ₂ C ₂ O ₄) = 134.0 g/mol														
1) $t = 0.977$														
2) $t = 1.008$														
3) t = 1.023									 					
									 				-	
4) $t = 1.063$													<u> </u>	
5) $t = 1.229$														
													<u> </u>	

464: For the complete neutralisation of 298.5 g oxalic												
acid-2-hydrate, $H_2C_2O_4$ 2 H_2O , a volume V = 24.3 mL												
caustic soda, $\tilde{c}(\frac{1}{1} \text{ NaOH}) = 0.2 \text{ mol/L is necessary. What is}$												
the titer of the sodium hydroxide standard solution?												
$M(H_2C_2O_4 \cdot 2 H_2O) = 126.066 \text{ g/mol}$												
1) $t = 0.513$		_	+	 _	 _	_	-	 _	 			+
2) $t = 0.974$												
3) $t = 1.026$			_	 	 							_
4) $t = 1.306$												
5) $t = 1.949$												
466: A KOH with the substance concentration of												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{KOH}) = 1.000 \text{ mol/L}$ is to be prepared. What is the												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer <i>t</i> of the KOH if the mass concentration $\beta(KOH) = 56.25 \text{ g/L}$?												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer <i>t</i> of the KOH if the mass concentration β (KOH) = 56.25 g/L?												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}$ KOH) = 1.000 mol/L is to be prepared. What is the titer <i>t</i> of the KOH if the mass concentration β (KOH) = 56.25 g/L? <i>M</i> (KOH) = 56.1 g/mol												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer <i>t</i> of the KOH if the mass concentration $\beta(KOH) = 56.25 \text{ g/L}$? M(KOH) = 56.1 g/mol												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration β (KOH) = 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$ 3) $t = 1.0000$												
466: A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$ 3) $t = 1.0000$ 4) $t = 1.0026$												
466 : A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$ 3) $t = 1.0000$ 4) $t = 1.0026$ 5) $t = 1.4386$												
466 : A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$ 3) $t = 1.0000$ 4) $t = 1.0026$ 5) $t = 1.4386$												
466 : A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L}$ is to be prepared. What is the titer t of the KOH if the mass concentration $\beta(KOH) =$ 56.25 g/L? M(KOH) = 56.1 g/mol 1) $t = 0.6951$ 2) $t = 0.9973$ 3) $t = 1.0000$ 4) $t = 1.0026$ 5) $t = 1.4386$												
466 : A KOH with the substance concentration of $\tilde{c}(\frac{1}{1}KOH) = 1.000 \text{ mol/L is to be prepared. What is the titer t of the KOH if the mass concentration \beta(KOH) = 56.25 \text{ g/L}?M(KOH) = 56.1 g/mol1) t = 0.69512) t = 0.99733) t = 1.00004) t = 1.00265) t = 1.4386$												

469: 50.0 mL of an Fe ²⁺ -containing solution consumes V												
= 24.6 mL potassium permanganate when titrated.												_
$c(1/5KMnO_4) = 0.1 \text{ mol/L}, t = 0.986$												
What is the mass concentration $\beta(\text{Fe}^{2+})$ in g/I of the												
employed solution?												
M(Fe) = 55.847 g/mol												_
<i>I)</i> $\beta(Fe) = 1.35 \text{ g/L}$												
2) $\beta(Fe^{2+}) = 2.71 \text{ g/L}$												
3) β (Fe ²⁺) = 4.06 g/L												
($\beta (Ee^{2+}) = 5.41 \text{ g/}$												
$r_{1} = p_{1} r_{2} r_{1} r_{2} r_{2} r_{1} r_{2} r_{2} r_{2} r_{1} r_{2} r_{2} r_{2} r_{1} r_{1} r_{2} r_$											$ \bot$	
5) β (Fe ²⁺) = 6.77 g/L										_	_	
											\perp	
-												
191. The all measurement of a water comple			Т	I					 			_
481: The pH-measurement of a water sample										\exists	Ţ	
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass											$\overline{+}$	
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in $\mu g/L$?												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration β (H ₃ O ⁺) in µg/L?												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration β (H ₃ O ⁺) in µg/L? M (H ₃ O ⁺) = 19 g/mol.												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration β (H ₃ O ⁺) in µg/L? M(H ₃ O ⁺) = 19 g/mol. 1) β (H ₃ O ⁺) = 0.32 µg/L												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration β (H ₃ O ⁺) in µg/L? M(H ₃ O ⁺) = 19 g/mol. <i>1</i>) β (H ₃ O ⁺) = 0.32 µg/L												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in $\mu g/L$? $M(H_3O^+) = 19 \text{ g/mol.}$ 1) $\beta(H_3O^+) = 0.32 \ \mu g/L$ 2) $\beta(H_3O^+) = 0.60 \ \mu g/L$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in $\mu g/L$? $M(H_3O^+) = 19 \text{ g/mol.}$ 1) $\beta(H_3O^+) = 0.32 \mu g/L$ 2) $\beta(H_3O^+) = 0.60 \mu g/L$ 3) $\beta(H_3O^+) = 7.5 \mu g/L$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in µg/L? $M(H_3O^+) = 19 \text{ g/mol.}$ <i>1)</i> $\beta(H_3O^+) = 0.32 \text{ µg/L}$ <i>2)</i> $\beta(H_3O^+) = 0.60 \text{ µg/L}$ <i>3)</i> $\beta(H_3O^+) = 7.5 \text{ µg/L}$ <i>4)</i> $\beta(H_3O^+) = 0.75 \text{ µg/L}$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in µg/L? $M(H_3O^+) = 19 \text{ g/mol.}$ <i>1)</i> $\beta(H_3O^+) = 0.32 \text{ µg/L}$ <i>2)</i> $\beta(H_3O^+) = 0.60 \text{ µg/L}$ <i>3)</i> $\beta(H_3O^+) = 7.5 \text{ µg/L}$ <i>4)</i> $\beta(H_3O^+) = 0.75 \text{ µg/L}$ 5) $\beta(H_3O^+) = 0.032 \text{ µg/L}$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in µg/L? $M(H_3O^+) = 19 \text{ g/mol.}$ <i>1)</i> $\beta(H_3O^+) = 0.32 \text{ µg/L}$ <i>2)</i> $\beta(H_3O^+) = 0.60 \text{ µg/L}$ <i>3)</i> $\beta(H_3O^+) = 7.5 \text{ µg/L}$ <i>4)</i> $\beta(H_3O^+) = 0.75 \text{ µg/L}$ 5) $\beta(H_3O^+) = 0.032 \text{ µg/L}$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in µg/L? $M(H_3O^+) = 19 \text{ g/mol.}$ <i>1)</i> $\beta(H_3O^+) = 0.32 \text{ µg/L}$ <i>2)</i> $\beta(H_3O^+) = 0.60 \text{ µg/L}$ <i>3)</i> $\beta(H_3O^+) = 7.5 \text{ µg/L}$ <i>4)</i> $\beta(H_3O^+) = 0.75 \text{ µg/L}$ 5) $\beta(H_3O^+) = 0.032 \text{ µg/L}$												
481: The pH-measurement of a water sample results in a pH-value of 7.5. What is the mass concentration $\beta(H_3O^+)$ in µg/L? $M(H_3O^+) = 19 \text{ g/mol.}$ <i>1)</i> $\beta(H_3O^+) = 0.32 \text{ µg/L}$ <i>2)</i> $\beta(H_3O^+) = 0.60 \text{ µg/L}$ <i>3)</i> $\beta(H_3O^+) = 7.5 \text{ µg/L}$ <i>4)</i> $\beta(H_3O^+) = 0.75 \text{ µg/L}$ 5) $\beta(H_3O^+) = 0.032 \text{ µg/L}$												

