Acetylsalicylic acid

Chemicals

- Salicylic acid, impurified
- Standard solution, known titre sodium hydroxide-solution 0.1 M
- Indicator solution
- Glacial acetic acid
- Acetic anhydride
- Mixture of ethyl acohol and water (1:2)
- Activated carbon
- Distilled water

Materialien

- Burette
- Erlenmeyer flask
- Measuring flask
- Bulp pipette with pipetting aid
- 500 mL multiple neck flask
- Lifting platform
- Beaker glasses
- Liquid funnel
- Measuring cylinder(2x 50 mL$)$
- Dropping funnel
- Glass stirrer
- Solid matter funnel
- Thermometer with ground joint
- Clamps and screwed joints
- Heating basket
- Stirring motor with stirrer and stirring locking
- Drying oven
- Analysis balance
- Reflux condenser

Safety tips

Acetic acid 100\%: - H226, H314 - P210, P243, P280, P301+P330+P331, P304+P340, P309+P310 - HAZARD!!	
	Ethyl alcohol: - H225 - P210 P243 P280 - HAZARD!!
Acetylsalicylic acid: - H302 H319 H335 H315 - P280 P302+P352 P305+P351+P338 P309+P311 - ATTENTION!!	

Technische Universität München	Organic synthesis
AuTUM	
Monika Partsch	

Reaction equation

Esterification by acidic catalysis:

Experimental procedure

Purity determination of the salicylic acid:

- Titrate the homogenized educt with the standard solution (known titre)
- Chose your own indicator solution
- Assumption: w(salicylic acid)= $75-85 \%$ pure

Description of 1-mol preparation:

- Place 1.2 mol acetic anhydride and 1.7 mol acetic acid in a 500 mL multiple neck flask apparatus with stirrer
- Add 1 mol salicylic acid at room temperature
- Stir the emerged suspension for two hours at $100^{\circ} \mathrm{C}$
- Hold the temperature for 10-15 minutes and within this time add drop wise 500 mL of water, then cool the mixture down to $20^{\circ} \mathrm{C} \rightarrow$ stir for another 30 minutes
- Suction-filter the white suspension and wash two times with 150 mL water each
- Recrystallize the moist raw product with activated carbon from the mixture of ethyl alcohol and water
- Then dry the recrystallized product at $105^{\circ} \mathrm{C}$ and determine the melting point of the dry product

Waste disposal:

- Dispose of the mother liquor in the container for non-halogenic solutions
- Dispose of the wastes of the titration in the container for alkaline solutions

Analysis:

- Calculate the purity of the impurified salicylic acid
- Calculate the charging stock for the production of a minimum of 25 g acetylsalicylic acid with a gain ratio of $60-65 \%$
- Calculation of the yield in grammes and percentage of theory
- Determination of the melting point of the prepared product

Technische Universität München AuTUM Monika Partsch	Organic synthesis

Preparation list

Chemicals:

- Salicylic acid $w=75-85 \%$ ca. 50 g
- impurified with sodium cholride
- Acetic acid anhydride
ca. 50 mL
- Acetic acid ca. 100 mL
- Ethyl alcohol 500 mL
- Activated carbon
- NaOH solution $\mathrm{c}=0,1 \mathrm{M}$ 150 mL - known titre
- phenolphtalein solution w (indicator) $=0,1 \%$ in ethyl alcohol

Tools:

- Burette
- Funnel
- Beaker glasses
- Erlenmeyer flask
- Weighing glass
- Stirring motor
- Stirrer
- Stirrer with locking
- 500 ml multiple neck flask with joint
- Thermometer with joint
- Reflux cooler with cooling tubes
- Dropping funnel
- Heating unit
- Powder funnel
- Suction strainer with round filter
- Evacuation bottle with rubber collar
- Evacuation unit
- Measuring cylinder

- Cooling bath
- Glass funnel with fitting folded filter
- Porcelain bowl
- Glass stirrer
- Drying oven
- Precision balance
- Melting-point apparatus
- Melting-point tube

