Technische Universität München	
AuTUM	Organic synthesis
Monika Partsch	

Ethanoic acid-1-butyl ester

Chemicals

- Acetic acid 100%
- Butan-1-ol
- Sulfuric acid, conc.
- Sodium carbonate-solution (w=10%)
- Sodium sulphate
- Water, dest.

Material

- 500 ml multiple neck flask
- Saparating funnel
- Beaker glasses
- Liquid funnel
- Measuring cyclinder (2x 100 ml)
- Pipette with pipetting aid
- Heating plate with magnetic stirrer
- Mixing blade
- Water separator
- Safety gloves
- Reflux condenser

Safety tips

- wear adequate safety gloves

Acetic acid 100%:

- H226, H314
- P210, P243, P280, P301+P330+P331, P304+P340, P309+P310
- HAZARD!!

Butan-1-ol:

- H226, H302, H335, H315, H318, H336
- P210, P243, P280, P302+P352, P304+P340, P305+P351+P338, P309+P310

P280, P305+P351+P338

HAZARD!!

Sodium carbonate:

H319

ATTENTION!!

Sulfuric acid, conc.

- P280, P301+P330+P331,
- HAZARD!!

- H314, H290
- P305+P351+P338, P309+P310

Ethanoic acid -1-butyl ester:

- H226, H336
- **EUH066**
- P210, P243, P280, P304+P340, P312
- HAZARD!!

Technische Universität München	
AuTUM	Organic synthesis
Monika Partsch	

Reaction equation

Esterification by acidic catalysis:

Experimental procedure

- Place 1 Mol acetic acid, 0.8 Mol butan-1-ol and 1 mL conc. sulfuric acid in a 500 mL multiple neck flask with stirring apparatus, reflux condenser and water separator
- Reflux → until no more reaction water is formed
- Heat carefully and hold the boiling point → otherwise the product will burn and become of black color
- Every 5 minutes the forming amount of water is determined and plotted in a coordinate system against time
- After the reaction has finished cool to room temperature and separate the reaction water from the water condenser
- Transfer remaining ester in a flask and stir for 20 minutes. During this time add drop wise 150 mL sodium carbonate-solution (w=10%) → Stir until the forming of gas has stopped
- Transfer the mixture in a separating funnel to isolate the aqueous phase which can be disposed of in the sink
- Dry the organic phase for 30 minutes over 10 g sodium sulphate
- Decant the ester in a previously tared beaker glass and determine the yield

Waste disposal

- The separated watery phase can be disposed of in the sink
- Dispose of the organic phase in the container for non-halogenic solutions

Analysis:

- Calculation of the yield of acetic acid butyl ester in grammes and percentage of theory regarding the charging stock of butan-1-ol
- Show the forming of water in a graphic diagramm (coordinate system)

Technische Universität München	
AuTUM	Organic synthesis
Monika Partsch	

Preparation list

Chemicals:

•	Glacial acetic acid	57.2 mL
•	Butan-1-ol	73.2 mL
•	Sulfuric acid, conc.	1.0 mL
•	Sodium carbonate	15.0 g
•	Sodium sulfate	10 g
•	Water, dest.	

Material:

- 500 mL multpile neck flask
- Separating funnel incl rubber plug
- Beaker glasses
- Liquid funnel
- Measuring cyclinder (2x 100 mL)
- Pipette with pipetting aid
- Heating plate with magnetic stirrer
- Mixing blade
- Water separator
- Safety gloves
- Reflux condenser with tubes
- Support stand
- Clamps and sockets

